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Abstract The generation of traceability links or trace-

ability matrices is vital to many software engineering

activities. It is also person-power intensive, time-consum-

ing, error-prone, and lacks tool support. The activities that

require traceability information include, but are not limited

to, risk analysis, impact analysis, criticality assessment, test

coverage analysis, and verification and validation of soft-

ware systems. Information Retrieval (IR) techniques have

been shown to assist with the automated generation of

traceability links by reducing the time it takes to generate

the traceability mapping. Researchers have applied tech-

niques such as Latent Semantic Indexing (LSI), vector

space retrieval, and probabilistic IR and have enjoyed some

success. This paper concentrates on examining issues not

previously widely studied in the context of traceability: the

importance of the vocabulary base used for tracing and the

evaluation and assessment of traceability mappings and

methods using secondary measures. We examine these

areas and perform empirical studies to understand the

importance of each to the traceability of software engi-

neering artifacts.
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1 Introduction

The importance of traceability of textual artifacts generated

during the software development lifecycle has been well

established in recent years [38]. The top–down traceability

of documents from a software project document hierarchy

(requirements-to-design, design-to-code, design-to-test

cases, etc.) provides assurance that all required features

(and only they) have been implemented and properly tested.

The easiest and most efficient way to ensure traceability is

to prepare traces at the time of creation of project artifacts,

e.g., record the requirements-to-design traceability matrix

(RTM) while preparing the design document. Often, how-

ever, this is not done (or not to the proper level of detail),

leaving requirements tracing to post-development (e.g., to

the Independent Verification and Validation (IV&V)1 ana-

lyst or to a tester or stakeholder who finds that they need the

RTM in order to perform their work). Tracing from scratch,

or even validating an existing RTM, is a tedious, error-

prone, and time-consuming process typically performed by

analysts with minimal tool assistance. Traditional methods

for tracing two documents to each other include manual
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keyword assignment and keyword searches in word pro-

cessors or spreadsheets [17].

Our work on the traceability problem has been moti-

vated by the state-of-the-art in Independent Verification

and Validation (IV&V) of software systems. IV&V is a

mandatory stage in the process of development and

deployment of most mission- or safety-critical software

systems [18, 29]. Third-party analysts receive a full col-

lection of artifacts for a software product and perform a set

of verification and validation tasks prior to the final

deployment of the software. Among the IV&V tasks per-

formed, establishing after-the-fact traceability mapping

(otherwise known as the Requirements Traceability Matrix

or RTM) between the product requirements and design (as

well as other artifacts, such as test cases) has traditionally

been one of the most tedious and time-consuming tasks.

In our previous work [15, 16, 20], we studied approa-

ches to automating the requirements tracing process by

using Information Retrieval (IR) methods to propose can-

didate links between a pair of project artifacts as well as

ways to incorporate automated traceability into the IV&V

process [14, 29].

Incorporation of automated tracing in an IV&V process

presents a number of challenges, chief among which is the

still-remaining need for the IV&V analyst to validate and

sign off on any RTM generated within the IV&V process

[18]. The software tools we have built [14] are designed to

work in concert with a human analyst. The software

delivers the candidate traceability matrix to the analyst who

can observe, validate, and correct the results, and provide

feedback to trigger re-computation of certain portions of

the candidate RTM. We have learned that automated

methods can produce reasonably accurate results in much

less time than it takes a human analyst to perform similar

work [20].

Tracing software engineering artifacts to each other is

similar to traditional information retrieval tasks such as

web search. Artifacts are broken into individual elements

(e.g., requirements, design elements, test cases). Elements

of one artifact are treated as documents in a document

collection, while elements of the other are treated as search

queries. At the same time, software artifacts pose a number

of unique challenges as well. IR methods are designed for

very large collections of reasonably large documents. On

typical IR scale, a requirements specification, viewed as a

collection of individual requirements, is quite small even

for larger software projects. Additionally, elements from

software artifacts are significantly smaller in size than

typical documents in IR. A third issue is the fact that the

corpus (i.e., collection of all words) used in creating the

software artifacts is small and does not obey typical word

distribution in English.

It is fair to qualify the state-of-the-art in automated

tracing as follows. Multiple groups [1, 4, 20, 28] have

achieved proof-of-concept success with the use of IR

methods for tracing. These methods provide reasonable

answers quickly. However, no method is yet capable of

generating complete and correct RTMs from pairs of tex-

tual artifacts. IR methods tend to capture true links in the

RTM very well, but typically at the price of a high rate of

false positive detection.

At this point, there are three possible directions in which

research on and practical adoption of automated trace-

ability methodology for tracing can proceed. First, new

automated methods can be developed with emphasis on

higher quality output. Second, existing automated pro-

cesses can be improved to produce better quality candidate

RTMs. Third, the work of human analysts with the results

of automated tracing methods can be studied with an eye

on improving the human–computer interaction and the

quality of the RTM revised by the human analyst. Human

analysts are already a significant part of the traceability

loop in Independent Verification & Validation processes

such as tracing, testing, and change impact assessment

[18, 29]. By introducing (and/or increasing) the role of

human analysts to other processes, it may be possible to

achieve better traceability and achieve it faster than the

current state-of-industry.

The first direction is being actively explored [5, 6, 30].

However, the results so far suggest that use of new IR

methods provides at best marginal improvement over the

traditional retrieval methods. While this aspect of today’s

research on traceability was not the focus of this paper,

some of the work conducted by our research group and

reported here illustrates that point (see Sect. 3 for

description of methods used and Sect. 4 for results).

The third direction, introduced in [18] and discussed at

TEFSE’07 [21] and TEFSE’09 [43], is an emerging

research area. We describe the importance and the role of

human analysts within the IV&V process in Sect. 2, in the

context of an overall overview of traceability research and

practices today.

The second direction is the focus of this paper. The

general idea behind this approach is straightforward. IR

methods produce a candidate RTM. This RTM is not quite

correct—e.g., it can contain multiple false positive links.

We can use various analyses on the data (the textual arti-

facts and the candidate RTM built for them) to attempt to

improve upon the original candidate RTM. Putting humans

in the tracing loop is one such way. But the goal of the

second direction is to minimize the work of humans by (1)

getting the most out of the IR method(s) used for RTM

recovery and (2) improving upon the candidate RTMs

supplied by the IR methods.
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In this paper, we present two sets of experiments that

address issues (1) and (2) from above. Our first experi-

ment was designed to understand the differences in per-

formance of three IR methods, vector space retrieval,

vector space retrieval with thesaurus, and latent semantic

indexing, when run under two different sets of conditions.

In a typical IR system, the document collection is avail-

able up-front. It is analyzed, and the results of the analysis

are stored. When a query comes, it is analyzed and

compared to the representations of individual documents

in the collection. In such a system, the vocabulary or the

corpus of terms used to match documents to queries comes

exclusively from the document collection. In the case of

RTM recovery, both artifacts are known up-front. We can

analyze the ‘‘queries’’ (elements of the high-level artifact)

and the ‘‘documents’’ (elements of the low-level artifact)

together. Thus, we have a choice: we can follow the tra-

dition of IR systems and use only the vocabulary of the

low-level artifact as the corpus of terms, or we can use the

joint vocabulary of both documents. The first experiment

in the paper uses two regular datasets, one small and one

of medium size, plus a third dataset which consists of 22

pairs of artifacts to see how the four IR methods listed

above fare in RTM recovery when executed with each of

the two possible vocabulary bases.

To understand how we can improve on candidate RTMs

after they have been reported by IR methods, we need to be

able to properly evaluate them. Our second set of experi-

ments addresses the issue of proper assessment of the

quality of candidate RTMs. Traditionally, Information

Retrieval uses recall, the percentage of true links retrieved,

precision, the percentage retrieved links that are true, and

their harmonic mean called the f-measure to evaluate the

quality of retrieval. However, it is possible to have two

candidate RTMs that have the same precision and recall but

are different in terms of their quality. The motivation for

our work comes from the example in Fig. 1. An IV&V

analyst is using an automated tracing tool to search for the

design elements that help satisfy a given high-level

requirement. Two tracing tools, A and B, provide a similar

user interface but differ in the methods that compute the

candidate RTM. Each tool provides sorted results to the

analyst’s query, result list A (from tool A) and B (from tool

B). Both result lists have recall of 100% (all correct links

are found) and precision of 50% (half of the retrieved links

are false positives): very good results. Result list A displays

all the false positives in the top portion of the list, while

result list B displays all the true links at the top of the list

and false positives at the bottom of the list. Recall and

precision indicate that these two tools have identical

quality levels from the developer’s perspective. However,

from the perspective of the analyst who must review the

results and make final selections, result list B (and thus tool

B) is far superior since it requires less perusing of invalid

results. Also, the analyst may have a more positive per-

ception of the tool as the results seem more trustworthy or

believable [16, 20]. As recall and precision cannot distin-

guish between tools A and B, more measures have to be

introduced. Such secondary measures should be responsi-

ble for capturing the ‘‘internals’’ of the result lists (often

called candidate lists), ensuring, for example, that list B

will be deemed superior to list A.

We have found that secondary measures can be used to

capture these characteristics and to help evaluate the

quality of a returned list from the analyst’s perspective. It is

important to have a complete and correct picture of the

effectiveness of IR methods and tools for requirements-

related software engineering tasks. Otherwise, we may

incorrectly reject good techniques or incorrectly accept

poor techniques. Toward that end, we have developed

several secondary measures and have examined their

ability to evaluate returned lists. We illustrate the power of

secondary measures with a number of examples where

primary measures show one picture, but secondary mea-

sures tell a different story.

The paper is organized as follows. Section 2 provides

a general overview of the state of research and practice

in the area of software traceability, describes the software

engineering processes that are affected and can be

improved by better and faster traceability, and discusses

the role of human analysts in the traceability loop.

Section 3 explains the research approach and discusses

vocabulary bases and secondary measures in detail.

Section 4 details the vocabulary base experiments and the

results obtained. Section 5 discusses the experimental

Fig. 1 Precision and recall do not suffice for evaluating the results

from the analyst’s perspective
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design and the results obtained for the secondary measure

study. Sections 4 and 5 include subsections on the

corresponding related work. Finally, Sect. 6 presents the

conclusions and future work.

2 Traceability in a nutshell: state-of-the-art

and challenges

In this section, we provide a brief description of the state-

of-the-art in traceability research in order to put the work

described in this paper in broader context.

Spanoudakis and Zisman [38] define software trace-

ability as the ‘‘ability to relate artefacts created during the

development of a software system to describe the system

from different perspectives.’’ This purposefully broad

definition yields a wide range of possible forms, processes,

and reasons for studying software traceability.

2.1 Motivations for traceability [38]

There are two distinctly different contexts which give rise

to the study of traceability: (1) process compliance and

product improvement and (2) software understanding and

reuse. In the former case, traceability work is performed as

part of an ongoing software development process. Its

results are applicable to the software project at hand. In the

latter case, traceability work is performed on completed

project data, and its results do not contribute directly to the

product improvement but rather are used in the product and

process analysis.

2.2 Links between software artifact elements

The key to traceability is the notion of a link between the

elements (e.g., requirements and design elements) of two

software artifacts. In some settings [17], links in the context

of traceability are represented as or understood as naviga-

ble hyperlinks explicitly incorporated in one or both arti-

facts during the appropriate stage (requirements elicitation,

design, testing, reengineering) of the software product

lifecycle. This approach is illustrated by the RETH

(Requirements Engineering Through Hypertext) system [9,

24] that uses a semi-automated process to engage the

software engineer in the process reengineering of a textual

artifact to incorporate hyperlinks between different ele-

ments. Such a process, in the case of the RETH system,

lead to perfect precision.

In contrast to this understanding of the notion of link,

our work assumes that a traceability link is a relationship

between two elements of two (different) artifacts.

This assumption is independent of the representation of

the relationship. The representation or storing of the

relationship, be it hyperlink, database index entry, poin-

ter, etc., is an important area of further research in the

traceability community. Generally speaking, the trace-

ability research community has yet to focus on the

aspects of link representation. We discuss prior work on

traceability with this in mind.

2.3 Traceability in the software lifecycle [38]

Within the software development process, traceability

plays an important role in change impact analysis, change

management, testing, and verification and validation

(V&V).2 Traceability of artifacts can usually be achieved

in one of two ways: by creating and maintaining trace-

ability information as a by-product of development or by

performing after-the-fact tracing of necessary artifacts as

a dedicated part of the process (e.g., change impact

analysis or V&V). In general, while maintaining trace-

ability as a by-product of development is desirable, it is

also time-consuming and is rarely done to the necessary

level of granularity. At the same time, development of

mission-critical projects (e.g., mission-critical software

produced by NASA [29]) is subject to government reg-

ulations requiring Independent Verification & Validation

(IV&V), part of which is validation, and, when neces-

sary, recovery of traceability information across the

entire hierarchy of project artifacts.

2.4 Traceability analysis [38]

Three types of traceability analysis can be distinguished:

manual, semi-automatic, and automatic. Manual analysis

of traceability has the analyst responsible for the search

for and final decisions on links between artifacts. Auto-

matic traceability analysis is performed by special-pur-

pose tracing software responsible for the searching for

and retrieval of links and the final traceability matrix. A

plethora of semi-automatic approaches have been posited

including (a) rule-based approaches [10, 11, 27, 37]

which generate links based on user-defined rules, used to

match portions of different artifacts; (b) process-driven

approaches [8, 34] which capture traceability information

by using special-purpose software to monitor software

development; and (c) collaborative approaches [18, 43],

which involve automated traceability tools guiding the

search for traceability links and human analysts render-

ing final decisions on the candidate links.

2 V&V is the same as IV&V but does not have to be performed by a

third party, it can be performed by the developer.
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2.5 State-of-the-art in traceability

While the study of traceability has been attracting more

and more attention in recent years, the reality «on the

ground» is sobering. In industry, traceability analysis most

often is performed after-the-fact and manually. Analysts

find little traceability information created in parallel with

the artifacts, and when they do, this information is often

unreliable and needs to be validated. Most traditional

requirements management tools [22, 41] require manual

generation of traceability links. Other approaches taken by

analysts involve the use of word processing/spreadsheet

software, manual keyword assignment, and use of text

search functions to find candidate matches. In general,

tracing processes are time-consuming and tedious and thus

tend to be error-prone, as the analyst gets tired of the

activity.

2.6 Traceability in IV&V

Our group has worked on automating traceability for the

IV&V process. IV&V is an expensive process, as it

involves third-party analysts. It is used for verification and

validation of software when the necessity to guarantee

proper operation outweighs the costs associated with hiring

the third party to perform V&V. An example of such a

situation is the IV&V analysis of all mission-critical and

safety-critical software deployed by NASA on its manned

and unmanned flight programs [29].

Traceability is one of the most time-consuming activi-

ties in the IV&V process. Even if traceability information

is present in the artifacts, IV&V analysts still must validate

the RTMs provided to them, which commonly involves

recreating the trace from scratch. This is typically done

using one of the manual techniques described above.

While automated tracing methods can be used to sup-

plant human IV&V analysts, they cannot be used to

replace them. IV&V analysts must certify the correctness

of the software system and/or discover latent defects. As

such, IV&V analysts bear critical responsibilities, not

associated with the work of analysts in other traceability-

related contexts (e.g., reverse engineering of existing

software). IV&V analysts must inspect the results of any

automated traceability analysis and certify or correct them.

A comprehensive discussion of the issue of developing

tracing software for IV&V is out of scope for this paper but

has been detailed elsewhere [18].

3 Research approach

This section presents the research approach for the two

experiments in this paper.

3.1 Vocabulary base

In a typical IR setting, we have a collection of documents

and a user information need expressed as a natural lan-

guage query (or just as a sequence of keywords). The task

of an IR method is to retrieve, for the collection, the doc-

uments deemed relevant to the query. Different IR methods

define the notion of relevance in different terms and use

different means to encode the content of the documents in

the collection. When considered in the context of require-

ments tracing, IR methods can be applied as follows. The

low-level artifact (a design document, for example) is

treated as a ‘‘document collection,’’ with each low-level

element viewed as an individual ‘‘document’’ in this col-

lection. Each high-level element (say from a requirements

document) is treated as the request to find low-level ele-

ments relevant to it. The low-level elements returned by an

IR method, for each of the high-level requirements, form

the candidate RTM.

Our work to date has concentrated on the study of three

categories of IR methods: vector space retrieval (see Sect.

3.1.1) [15, 16, 20], latent semantic indexing (LSI) (see

Sect. 3.1.2) [13, 40], and so-called keyword extraction

methods [19].

3.1.1 Vector space retrieval

Standard Vector space model [3] can be defined as follows.

Let V = {k1,…,kN} be the vocabulary of a given document

collection. Then, a vector model of a document d is a

vector (w1,…,wN) of keyword weights, where wi is com-

puted as:

wi ¼ tfiðdÞ � idfi:

Here, tfi(d) is the so-called term frequency: the

(usually normalized) frequency of keyword ki in the

document d, and idfi, called inverse document frequency

is computed as:

idf ¼ log2

n

dfi

� �

where n is the number of documents in the document

collection, and dfi is the number of documents in

which keyword ki occurs. Given a document vector

d = (w1,…,wN) and a similarly computed query vector

q = (q1,…,qN), the similarity between d and q is defined as

the cosine of the angle between the vectors:

simðd; qÞ ¼ cosðd; qÞ ¼
PN

i¼1 wi � qiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 w2

i �
PN

i¼1 q2
i

q :

The above weighting scheme is called the tf-idf weighting

scheme. In addition to tf-idf, we used two other weighting

Requirements Eng (2010) 15:313–335 317
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schemes, namely the Okapi weighting scheme [36] and

LTU [23].

In the Okapi scheme, the keyword weight is calculated

as follows:

wi ¼
tfiðdÞ

0:5þ 1:5 dl
avg dl

þ tf
log

n� dfi þ 0:5

dfi þ 0:5

� �

where dl is the length of the document under consideration,

avg_dl is the average length of the documents in the doc-

ument collection, n is the total number of documents, tfiðdÞ
is the term frequency of the ith term in document d and dfi

is the document frequency of the ith term in the document

collection.

In the Linear Threshold Unit (LTU) weighting scheme,

the keyword weight is calculated as follows:

wi ¼
ðlogðtfiðdÞÞ þ 1Þ log n

dfi

� �
0:8þ 0:2 dl

avg dl

:

Use of thesaurus. We have used vector space retrieval

both with and without an artifact-specific thesaurus—a list

of synonyms, homonyms, and abbreviations that allows us

to match terms such as ‘‘fault’’ in the high-level document

to terms such as ‘‘error’’ in the low-level document. Given

a thesaurus T = {hki, kj, aiji}, where ki and kj are matching

thesaurus keywords and aij is the similarity coefficient

between them, then the similarity between d and q can be

calculated as follows:

simðd; qÞ ¼ cosðd; qÞ

¼
PN

i¼1 wi � qi

P
hki;kj;aiji2T aijðwi � qjþ wj � qiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 w2
i �
PN

i¼1 q2
i

q :

Vocabulary base. As stated above, all vector space

retrieval methods represent both documents and queries as

vectors of weights over the space V = {k1,…,kN} of

keyword weights. In traditional IR settings, document

collections are large, stable, and known up-front, while

queries are generated dynamically. In such situations, V is

the list of all keywords found in the document collection.

Any query terms not found in the document collection will

be ignored.

When performing traceability tasks, both high-level

(queries) and low-level (documents) artifacts are known

up-front,3 and, in fact, both artifacts are usually processed

at the same time and side-by-side. This raises the question

of what is the ‘‘proper’’ vocabulary base in our case. Is it

better to stick with the traditional approach of using only

keywords from the low-level artifact, or will using the

combined vocabulary of both documents yield improved

results?

We note here that the influence of the vocabulary base

on the performance of the vector space retrieval is quite

subtle. In both cases (with the exception of thesauri-based

retrieval), a direct keyword match can occur only if the

keyword is found in both the high-level and the low-level

documents. The presence of extra terms in the vocabulary

will affect the relative importance of terms, but will not add

new matches or negate existing ones.

3.1.2 Latent semantic indexing

Small datasets, as found in software engineering trace-

ability applications, allow us to use latent semantic

indexing (LSI) [7]. LSI is a dimension reduction tech-

nique based on singular value decomposition (SVD) of

the term-by-document matrix that can be constructed by

putting the tf-idf vectors of all documents in a single

matrix. SVD transforms the original matrix into a

product of two orthogonal matrices and a diagonal

matrix of eigenvalues. By considering only the top k

eigenvalues, we can obtain an approximation of the

original matrix by a smaller matrix. Rows of the matrix

can be compared to each other using the cosine simi-

larity described above. For example, if L is a document-

by-term weight matrix of dimension A 9 B, its SVD is

written as L = TSD’, where T is a matrix with orthog-

onal rows, D’ is a matrix with orthogonal columns, and S

is a diagonal matrix of eigenvalues of L. We can trim the

list of eigenvalues of L from rank(L) to a smaller number

k and obtain a decomposition Lk = TSkD’, where Sk is

the diagonal matrix of size k 9 k with the k largest

eigenvalues of L on the diagonal. Rows of the matrix

TS2
kD can be compared to each other using the cosine

similarity as defined above. Use of the matrix TS2
kS

instead of the original matrix L reduces the dimension-

ality of the document vectors from B to k [7].

Vocabulary base. As with vector space retrieval, we

consider two ways to build the reduced-dimensionality

matrix:

• from the low-level artifact only. This is the standard

approach to building the reduced matrix. Singular-

valued decomposition (SVD) is applied to the element-

by-keyword matrix consisting only of the low-level

artifact vectors, and

• from both low-level and high-level artifacts. Just as

above, we can leverage the fact that we know our queries

in advance (see footnote 3). Instead of generating query

vectors after performing LSI on the low-level element

vectors, we can add high-level element vectors to the

element-by-keyword matrix on which SVD is performed.

3 See discussions of the process for IV&V ‘‘after-the-fact’’ tracing in

Sects. 1 and 2.
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Once SVD is complete and the new number of dimensions

is selected, we extract the query vectors from the reduced

matrix directly and compare them to the reduced vectors

for the low-level documents.

Generally speaking, vocabulary base has a more pro-

nounced effect on the behavior of LSI retrieval, as it

affects the dimensionality of the starting matrix for the

LSI process and thus may significantly alter the reduced

matrix.

3.1.3 Methods for building the corpus

The IR methods described above typically start by

building a corpus that contains all of the terms or words

found in the artifacts that will be traced. As described

above, the corpus can be built using both of the artifacts,

or it can be built using just one of the artifacts. This

distinction has not been studied by researchers, and we

address it here. Our study will examine the impact of

vocabulary base on the accuracy of the IR methods for

tracing and is discussed in Sect. 4.

3.2 Secondary measures

As mentioned in the sect. 1 and illustrated in Fig. 1,

there are many situations where recall and precision do

not provide sufficiently accurate information about the

structure of the candidate lists. To address this need, we

have developed secondary measures for evaluating IR

techniques as applied to software engineering artifact

tracing from the analyst’s perspective. These can be

applied to techniques used for a variety of purposes, but

we focus on tracing in this paper. Our measures help

assess the quality of returned candidate lists and help

select a ‘‘best list’’ when recall and precision are about

the same for all lists. This is useful in comparing dif-

ferent IR techniques (where each returns a list), different

levels of analyst feedback etc.

Before defining the secondary measures, it is useful to

examine the primary IR measures of recall, precision, and

f-measure. Recall is defined as the ratio of the number of

links returned by the IR method to the total number of

possible links.

Recall ¼ Number of matches found by the IR method

Total number of possible matches

Precision is computed as the fraction of the relevant

documents in the list of all documents returned by the IR

method.

Precision ¼ Number of true links found

Total number of links returned by the IR method

An ideal IR or traceability method should produce as high

precision and recall as possible. F-measure is a harmonic

mean of precision and recall:

F ¼ 2 � precision � recall

precision þ recall

It can be seen that achieving high precision and high recall

is a balancing act. The above-mentioned formula puts

equal preference to both recall and precision. The b
parameter is introduced in the above formula to tilt the

balance one way or the other. The parameter b can be

altered to set the desirable significance for either recall or

precision:

Fb ¼
ð�þ 1Þ � precision � recall

recall þ b � precision

If b[ 1, the recall will be valued more than precision, and

if b\ 1, the precision will be valued more than recall.

Relevance feedback takes advantage of the analyst input

to improve the performance of the retrieval algorithms.

Specifically, we use Standard Rochio method [3] to per-

form analyst feedback in our work. In the case of the vector

space model, the relevance feedback technique adjusts the

keyword weights of the query vector based on the infor-

mation provided by the analyst. The new query vector qnew

is computed as follows:

qnew ¼ aqþ b
r

X
dj2Dr

dj

0
@

1
A� k

s

X
dk2Dirr

dk

 !
:

As shown in the above formula, the factor corresponding

to the document vectors identified as relevant can potentially

increase the recall, and the factor corresponding to the

document vectors identified as irrelevant can potentially

increase the precision. The constants a, b, c in the formulas

above can be adjusted in order to emphasize positive or

negative feedback as well as the importance of the original

query vector. Dr is the set of documents deemed as relevant,

and Dirr is the set of documents deemed as irrelevant, as

deemed by the user. Again, the similarity is recomputed with

the query vector qnew.

The proposed measures are presented below. The first

three measures deal with the quality of the individual

returned lists.

3.2.1 DiffAR

DiffAR is designed to evaluate the internal structure of

candidate link lists. Informally, DiffAR is the difference

between the average similarity of a relevant match (an

item in the list that is truly relevant to the query) and a

false positive (an item in the list that is not relevant) in
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the list of candidates returned by an automated tool. More

formally, we define DiffAR as follows. Given textual

artifacts H = (h1,…,hm) and D = (d1,…,dn), let L = {(d,

h)|sim(d, h)} be the set of all candidate matches returned

by some IR method. L consists of two types of candidates:

true matches and false positives. Let LT be the set of true

matches and LF be the set of false positives of L. Then,

DiffAR is defined as:

DiffAR ¼
P
ðd;hÞ2LT

simðd; hÞ
LTj j

�
P
ðd0;h0Þ2LF

simðd0; h0Þ
LF

:

In general, the higher the value of DiffAR, the more distinct

true matches become in the candidate lists.

3.2.2 DiffMR

Measures that rely on averages are known to be sensitive to

extreme values. DiffMR is a version of the DiffAR measure

that relies on medians rather than averages:

DiffMR ¼ medðd;hÞ2LT
ðsimðd; hÞÞ � medðd0;h0Þ2LF

ðsimðd0; h0Þ:

3.2.3 Lag

DiffAR and DiffMR look at the quantitative difference

between the similarity scores of true matches and false

positives. Note that L ¼
S

h2H Lh, where Lh ¼ fd; hÞj
simðd; hÞ[ 0g, i.e., L is constructed out of candidate lists

for each element h € H. But, it is possible that for some h €
H, a similarity of 0.3 is very high, whereas for some other

h0 € H, it is rather low, and such nuances are missed in the

computation of DiffAR and DiffMR. Lag is the measure

designed to address this potential problem.

Let d be an element of a textual artifact D and h be an

element of another textual artifact H. Let (h, d) be a true

match returned by an IR method in the list Lh of can-

didate links for h. The Lag of the link (h, d), denoted

Lag(h, d), is the number of false positive links (h, d0)
that have higher similarity scores than (h, d). Informally,

the Lag of a true match is the number of false positives

above it in the list of candidate matches. The overall Lag

of a list of candidate matches L is the average Lag of a

match:

Lag ¼
P
ðh;dÞ2L Lagðh; dÞ

Lj j :

Lag specifies, on average, how many false positives are

found in the candidate lists above true links. The lower it is,

the higher is the separation between true matches and false

positives (note here that if a false positive has the highest

relevance in a list of candidate links, it contributes 1 to the

Lag of each true link in the same list).

3.2.4 Selectivity

The final secondary measure we describe here is selectivity.

Unlike previously described DiffAR, DiffMR, and Lag,

selectivity does not look into the internal structure of the

list of candidates. Rather, it can be used in lieu of precision

in order to determine whether the candidate lists returned

by a text mining tool are of acceptable sizes.

In general, when an analyst has to perform a subcom-

ponent matching (tracing) task manually, there are n 9 m

potential candidate matches to be checked: each compo-

nent of artifact H needs to be compared to each component

of artifact D. As mentioned above, an automated mining

method produces a list L of candidate matches. Selectivity

of the method is defined as:

selectivity ¼ Lj j
m � n:

Selectivity measures the savings incurred by the analyst

when manually going through the list generated by an

automated method rather than manually comparing each

pair of elements. The smaller the selectivity, the better the

savings for the analyst.

Selectivity is not an exact measure of effort savings,

because it assumes that the analyst will be correcting only

type I errors (errors of commission) found in the candidate

RTM. It needs to be considered in concert with recall. The

higher the recall, the fewer errors of omission the analyst

needs to fix, the better selectivity approximates effort

savings.

4 Vocabulary base study

In this study, we compare the results of using tf-idf term

weighting for two different vocabulary bases: low-level

artifact and both low-level and high-level artifacts. We

have considered three different datasets.

4.1 Datasets

The datasets used are described below.

4.2 MODIS

The NASA Moderate Resolution Spectrometer (MODIS)

dataset [26, 33] is a small dataset created from the full

specification (high- and low-level requirements documents)

for the MODIS space instrument software. This dataset

contains 19 high-level requirements, 49 low-level

requirements, and a validated RTM containing 41 links that

we refer to as the ‘‘answer set.’’ The answer set was

manually constructed by the authors and checked by a
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number of senior analysts with significant tracing experi-

ence [33].

4.3 CM-1

The dataset consists of a complete requirement and a

complete design document for a NASA space instrument.

We manually extracted individual requirements (235) and

design elements (220) from the documents. We consider

the forward tracing task, from requirements to design ele-

ments. The answer set, containing 361 links, was con-

structed by a team of graduate students and junior analysts

and was reviewed by a senior analyst and the authors.

4.4 Waterloo

The dataset consists of 22 projects completed by students in

the graduate-level Software Engineering course taught by

Dan Berry at the Department of Computer Science, Uni-

versity of Waterloo. The students were given the task of

designing a voice-over-IP management software system.

For the purpose of this study, we have used two documents

from each of the 22 projects: the requirements specification

and the use cases description. The requirements specifica-

tion contained the same core functionality of the system for

all groups as well as a number of personalized requirements.

The use cases have been designed by students to match the

functional requirements found in the specification. An

example requirement from the requirement specification of

project 1 (of the 22) follows: ‘‘F35 The caller will

hear a dial tone before placing a call.’’ An

example use case from project 1 that addresses this

requirement (italics added for emphasis) is shown next:

UC36 Number: UC36

Name: Make Call

Authors: N.B., C.P., S.W., C.A.

Event: Caller wishes to call callee.

Callee’s phone number as input.

Actors: Caller

Overview: This use case captures the

process by which the caller places a

call to the callee. The caller picks up

the phone, receives a dial tone, and

then proceeds to dial 4 digits to make

the call.

If the caller’s account is cancelled,

then they do not receive a dial tone.

If the caller’s account is suspended,

then they receive a dial tone, but

cannot call anyone but the

administrator.

If the callee is busy, then the caller

receives a busy signal. If the callee is

not busy, then the caller hears the

ringing signal until the callee picks

up the phone, or until 5 min pass and the

system drops the connection.

We chose to use the 22 (out of a total of 36) groups

whose project submissions included an RTM in softcopy

format for the functional requirements-to-use cases trace.

We have spot-checked the submitted RTMs, but otherwise

used them without change. Each requirements document

contained anywhere between 17 and 80 functional

requirements, with an average of 48 requirements per

document (we ignored non-functional requirements in this

experiment as they were not included in the RTMs sub-

mitted by students). Each use cases document also con-

tained between 5 and 30 use cases, with about 17 use cases

per document. The answer sets contained between 19 and

143 links, with an average of about 57 links per answer set.

It was not uncommon for functional requirements in this

dataset to go unsatisfied by the use cases.

4.5 Results

We have implemented all the IR methods mentioned in

Sect. 2 as a part of a requirements tracing tool called

REquirements TRacing On target (RETRO) [16]. Each of

the methods is enhanced with user feedback processing.

We simulated the analyst vetting the candidate link list and

indicating if links are true or false. If the simulation indi-

cates TRUE, the keywords found in that document are

given increased value in the query vector (the opposite

occurs for FALSE). The IR method is then re-executed

using the re-weighted query vectors. For Vector space

retrieval, as well as for both keyword extraction approaches

(with x = 30, 50), we use Standard Rochio Feedback [3]

with equal weight assigned to the original query vector,

positive feedback, and negative feedback. For LSI, we use

the feedback technique from Deerwester et al. [7]. Each

experiment is run for eight iterations. On iteration 0, the

chosen IR method is run to build the initial list of candidate

links. On each subsequent iteration, we simulate the

examination of the top two (not yet visited) elements in the

list for each high-level element. These elements are

checked against the (known to the simulation) actual RTM,

and correct feedback is provided.4 The results of running

each experiment were collected and analyzed against

4 We note that our simulation of analyst feedback concentrates on

capturing the effects of the provided feedback, rather than the process.

It is hard to imagine an actual analyst working with the system

providing feedback in such a regular manner. Research into the actual

analyst interaction with traceability tools is another part of our

research agenda [18] and is currently underway. It is outside the scope

of this paper, however.
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existing answer sets. In this paper, we show only the results

from iteration 0 (prior to feedback) and iteration 8.

In Tables 1, 2, 3 and 4, we summarize the obtained

results for the vector space model with tf-idf weighting,

Okapi weighting, and LTU weighting, as well as for LSI

for two different vocabulary bases (low-level artifact only

and low-level plus high-level artifact), for iteration 0 and

iteration 8, respectively. In each table, we show the results

obtained for the three datasets: recall, precision, and f2. For

example, we can see from Table 1, iteration 0 that vector

space with tf-idf weighting for the CM-1 dataset yielded

recall of 0.98, precision of 0.02, and f2 of 0.07 for the low-

level artifact only and recall of 0.98, precision of 0.02, and

f2 of 0.08 for a vocabulary base of low-level plus high-

level artifact.

Results for CM-1 and MODIS are shown outright.

Note that the LSI table adds a column for the number of

dimensions used. For example, we see that LSI with 10

dimensions for the MODIS dataset yielded recall of 0.95,

precision of 0.05, and f2 of 0.22 for the low-level arti-

fact only and recall of 0.93, precision of 0.06, and f2 of

0.25 for a vocabulary base of low-level plus high-level

artifact. For the Waterloo dataset, we show four results

(moved to ‘‘Appendix A’’ for readability, Tables 7, 8

and 9): the average, the median, the maximum, and the

minimum of each measure. Note that the measures are

computed independently—e.g., maximum recall and

maximum precision can be reached on different cases in

the dataset. For example, in Table 7, we see that vector

space with tf-idf weighting for the first artifact pair of

the Waterloo dataset (Waterloo_1) yielded recall of

0.872, precision of 0.09, and f2 of 0.318 for the low-

level artifact only and recall of 0.769, precision of 0.411,

and f2 of 0.788 for a vocabulary base of low-level plus

high-level artifact.

From the tables, we observe the following. All methods

exhibit high recall at iteration 0. For the CM-1 dataset,

recall remains generally stable, while for the Waterloo

dataset recall tended to remain the same for about 40% of

the cases, improve for about 50%, and drop slightly for

about 10% of the cases. Precision on smaller datasets

(MODIS, Waterloo) tends to be between 5 and 15% for

individual cases (with the exception of a couple of outliers

in the Waterloo dataset) at iteration 0, improving by 8–10%

by iteration 8. However, precision is around 2% for CM-1

at iteration 0 and does not improve.

The Waterloo dataset consists of 22 artifact pairs. This

afforded us the ability to run statistical analyses of the

results obtained when testing a variety of IR methods on

this dataset. Table 5 shows the results of the statistical

analysis for three methods: vector space retrieval using

TF-IDF and LTU weightings and LSI. As mentioned

above, Appendix A contains the full set of tables showing

the recall, precision, and the f2 measure for all pairs of

artifacts tested in the experiments. TF-IDF and LTU

methods were applied to all 22 artifact pairs. LSI was

applied to 11 of 22 artifact pairs which contained sufficient

number of requirements and test cases to warrant the use of

LSI (i.e., to allow for non-trivial dimensionality reduction).

The LSI method was run for 5, 10, and 15 dimensions for

low-level artifact vocabulary base and for 10, 25, and 40

dimension for low-level ? high-level vocabulary base.

There are two cases of missing data: on two artifact pairs,

15-dimensional matrix for the low-level artifact could not

be obtained (due to a small original number of keywords),

these rows were removed from consideration.

Table 1 Vocabulary base: MODIS and CM-1 datasets, vector space

retrieval using TF-IDF

Vocabulary base Low Low ? high

Dataset Recall Precision F2 Recall Precision F2

Iteration 0

CM-1 0.98 0.02 0.07 0.98 0.02 0.08

Modis 0.76 0.08 0.28 0.83 0.50 0.73

Iterarion 8

CM-1 0.98 0.02 0.08 0.98 0.02 0.08

Modis 0.88 0.18 0.50 0.83 0.50 0.73

Table 2 Vocabulary base: MODIS and CM-1 datasets, vector space

retrieval using Okapi

Vocabulary base Low Low ? high

Dataset Recall Precision F2 Recall Precision F2

Iteration 0

CM-1 0.98 0.02 0.08 0.98 0.02 0.08

Modis 0.76 0.08 0.28 0.76 0.08 0.28

Iteration 8

CM-1 0.99 0.02 0.08 0.98 0.02 0.08

Modis 0.88 0.16 0.46 0.80 0.54 0.73

Table 3 Vocabulary base: MODIS and CM-1 datasets, vector space

retrieval using LTU

Vocabulary base Low Low ? high

Dataset Recall Precision F2 Recall Precision F2

Iteration 0

CM-1 0.98 0.02 0.07 0.98 0.02 0.07

Modis 0.76 0.08 0.28 0.76 0.08 0.28

Iteration 8

CM-1 0.98 0.02 0.08 0.98 0.02 0.08

Modis 0.88 0.17 0.48 0.85 0.48 0.74
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Table 5 shows the results of two statistical tests per-

formed on the f2 measures computed for the test runs:

the paired t-test and the Pearson correlation. The first

column lists the method and iteration, the second column

lists the number of artifact pairs considered, the third

column provides the means for the low artifact vocabu-

lary base, the fourth column provides the means for the

low ? high artifact vocabulary base, and the fifth col-

umn presents the difference (if negative, low only was

better than low ? high artifact vocabulary base; if

positive, the opposite is true). The sixth column of

Table 5 presents the standard error, followed by the t-

value, the eighth column has the p-value (alpha = 0.05),

the ninth column shows the 95% confidence interval, and

finally the last column provides Pearson’s correlation.

Vector space model with LTU weighting on iteration 0

on 22 artifact pairs had a mean f2 measure of 0.5164 for

low only, 0.5101 for low ? high vocabulary base, a

positive difference of 0.0063 (so low ? high was better),

a standard error of 0.0535, a t-value of 0.12, a p-value of

0.907, a confidence interval of (-0.1049, 0.1175), and

Pearson’s was -0.165. Where the difference between the

means of f2 measure of methods was deemed significant

by the paired t-test, the text is in bold-face. We also

applied bold-face to the high-correlation cases (all the

LSI cases).

We examined the LSI method with small matrices,

medium-sized matrices, and large matrices. In our case, for

low-level artifact only this translated to 5, 10, and 15

dimensions. For low ? high-level, there were 10, 25, and

40 dimensions (due to an increase in the number of terms in

the corpus). Table 5 has some entries labeled «all data».

This means that small matrices have been compared to

each other (5 dimensions to 10 dimensions as shown in

Table 4 Vocabulary base:

MODIS and CM-1 datasets,

latent semantic indexing

Vocabulary base Low Low ? high

Dataset #Dim Recall Precision F2 #Dim Recall Precision F2

Iteration 0

CM1 100 0.99 0.01 0.04 200 0.99 0.01 0.04

200 0.99 0.01 0.04 25 0.99 0.01 0.05

25 1.00 0.01 0.04 400 0.99 0.01 0.04

Modis 10 0.95 0.05 0.22 10 0.93 0.06 0.25

25 0.88 0.06 0.23 30 0.76 0.05 0.20

40 0.85 0.06 0.22 60 0.88 0.06 0.22

Iteration 8

CM1 100 0.99 0.01 0.05 200 0.99 0.01 0.05

200 0.99 0.01 0.05 25 0.99 0.01 0.05

25 0.98 0.01 0.04 400 0.99 0.01 0.05

Modis 10 0.80 0.16 0.45 10 0.85 0.11 0.36

25 0.80 0.11 0.36 30 0.88 0.12 0.39

40 0.80 0.14 0.42 60 0.78 0.15 0.42

Table 5 Vocabulary base: Waterloo dataset. Results of paired t-test analysis for F2 measures (low-level artifact vocabulary base versus low-

level ? high-level artifact vocabulary base)

Method, iteration N Means SE t-value p-value 95% CI Pearson

Low Low ? high Difference

TF-IDF, iter. 0 22 0.5263 0.4933 0.033 0.0557 0.59 0.56 (-0.0828, 0.1488) -0.288

TF-IDF, iter. 8 22 0.4974 0.4506 0.0468 0.0487 0.96 0.348 (-0.0546, 0.1481) 0.009

LTU, iter. 0 22 0.5164 0.5101 0.0063 0.0535 0.12 0.907 (-0.1049, 0.1175) -0.165

LTU, iter. 8 22 0.4919 0.4843 0.0076 0.0504 0.15 0.882 (-0.0973, 0.1124) -0.128

LSI, all data, iter. 0 31 0.365 0.4098 -0.04474 0.00826 -5.41 0.0001 (-0.06162, -0.02787) 0.939

LSI, all data, iter. 8 31 0.3428 0.3833 -0.04047 0.00785 -5.16 0.0001 (-0.05650, -0.02444) 0.949

LSI, 10 dim, iter. 0 11 0.3904 0.367 0.0235 0.0111 2.12 0.06 (-0.0012, 0.0481) 0.976

LSI, 10 dim, iter. 8 11 0.3208 0.352 -0.0312 0.0104 -3.01 0.013 (-0.0543, -0.0081) 0.96
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Table 6), medium to medium, and large to large (15

dimensions to 40 dimensions). A straight comparison of 10

dimensions to 10 dimensions was also made as seen in

Tables 5 and 9: «LSI, 10 dim» tests paired the f2 measures

reported by both low-level and low-level ? high-level

artifact vocabulary base for 10 dimensions.

As can be seen from Table 5, the results can be grouped

into three distinct categories. There are results that show no

significance and no correlation (not bolded). Specifically,

the vector space runs with tf-idf and LTU weighting fall into

this category. This is interesting because it tells us that using

the low-level plus high-level artifact for the vocabulary base

does something ‘‘different’’ than when just using the low-

level artifact. In fact, this can be observed in the full

experimental results found in ‘‘Appendix A’’: for example,

of 22 cases reported in Table 7, 11 showed improvement in

f2-measure going from low to low ? high vocabulary base,

while the other 11 showed improvement going in the

opposite direction, with differences in the values of

f2-measures exceeding 0.1 in most cases. Further investi-

gation is warranted to discover, examine, and characterize

‘‘different.’’

Next are the methods that have statistical significance and

high correlation. This describes three of the four LSI runs.

Only LSI dimension 10 iteration 0 does not fall into this

category. The three LSI runs all indicate that the low-level

artifact yields a better mean for f2 than with both low- and

high-level artifacts (difference is negative for all three).

The third and final category covers the method runs that

showed no significance and high correlation. Only the LSI

run left out above falls here. Note that the LSI run of

interest (for dimension 10 iteration 0) shows that the low-

level ? high-level yields a better f2 mean than low-level

only, though not statistically significant.

The use of both high- and low-level artifacts for

vocabulary base could bring significant payoff, but was

risky, as overall it tended to decrease the accuracy of the

results (lowered f2 measure, for example). For the MODIS

dataset, using both artifacts lead to a significantly better

overall result at iteration 8, as evidenced by the f-measure.

However, within the Waterloo dataset, there was a wide

range of diversity in the results that used both vocabulary

bases.

4.6 Vocabulary base: related work

In software engineering, we have the luxury of having the

queries ahead of time. This allows us to decide if we want

to use the queries to assist in building the corpus or not. In

information retrieval, the corpus is built just using the

document collection because queries are not known in

advance. However, researchers have tried to improve the

queries and retrieval results based on the query logs and

histories. Baeza-Yates et al. [2] propose a method that,

given a query, will recommend similar queries that have

been issued in the past. Using this information combined

with the user behavior for those past results, the new query

results can be improved.

In the information retrieval world, researchers have tried

to mine the domain vocabulary to improve the query.

Srinivasan et al. [39] used a combination of rough sets and

fuzzy sets to create a framework to mine the vocabulary.

They also examined the problem of co-coordinating mul-

tiple views of the vocabulary.

5 Secondary measures study

As mentioned in Sect. 2, human analysts must be an inte-

gral part of the traceability assessment process in the IV&V

setting. Our final study concentrated on the importance of

secondary measures to assisting in evaluating traceability

methods from an analyst’s perspective.

Our study included the following steps. High- and low-

level elements were parsed from each artifact. The ele-

ments were then subjected to stemming [35] and stop word

removal. The resulting information was passed to the

specific IR method for creation of vectors of term weights.

Next, we simulated the work of an IV&V analyst aided

by the selected IR technique. Initially, the IR technique was

used to generate candidate links between the artifact levels.

Then, perfect analyst feedback was simulated. We exam-

ined four different feedback strategies: Top 1, Top 2, Top

3, and Top 4. Using strategy Top i, the feedback simulator

examined (for each high-level requirement) the top i

unexamined candidate links in the list, looked for them in

the true RTM or answer set for the dataset, and specified

whether each examined link was a true link or a false

positive. We chose to emulate perfect feedback because no

software can be expected to reasonably recover from

human judgment errors. At the same time, we want to

investigate which IR methods are most receptive to correct

user feedback.

The information collected via the process described

above was encoded in XML and was passed to the feed-

back processor, which updated the query vectors and

passed control back to the IR method for the next iteration.

Table 6 Vocabulary base: pairings of test cases for Waterloo ‘‘all

data’’ rows in Table 5

Low-level artifact

(Dimensions)

Low-level ? high-level artifact

(Dimensions)

5 10

10 25

15 40
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We ran eight iterations for each IR technique. Our analysis

tool was used to compare the actual results (the answer set

or true RTM) to the results obtained by the IR method

(returned candidate link lists) for every iteration. The IR

methods were implemented in our tool REquirements

TRacing On target (RETRO) [14]. The resulting informa-

tion was used to calculate primary and secondary measures

for evaluation. Measures were then plotted to assist in

analysis.

At each iteration of the tracing process, in addition to

considering the full list of candidates returned by a specific

method (i.e., the list of (d, h) pairs with sim(d, h) [ 0), we

also consider filtered lists. Given a filter value a[ 0, the

filtered list La
h consists of all links (d, h) such that sim(d,

h) C a. In our experiments, a was taken to be equal to 0.05,

0.1, 0.15, 0.2, and 0.25.

5.1 Examples

We present a number of examples discovered during the

analysis of the results from our experiments that illustrate

the importance of the secondary measures. In all examples,

we compare two separate runs of the experiment side-by-

side. We then show that the picture painted by the precision

and recall numbers (in terms of which run produced

‘‘better’’ results) needs to be altered, as demonstrated by

the secondary measures. In some examples, secondary

measures serve as ‘‘tie-breakers,’’ allowing us to choose the

better of the two runs. In other examples, the information

provided by the secondary measures bridges the gap

between our assessments of the two runs.

The examples contain two types of graphs. We use

recall-versus-precision trajectories to plot the behavior of

the primary measures over the course of the feedback

process. Each point represents a (precision, recall) pair

after some iteration (0, 1,…,8) of the feedback loop. The

lines connect the neighboring iterations. For secondary

measures, we simply plot the value of the measure at each

iteration.

5.1.1 Example 1

The graph in Fig. 2 shows the recall-versus-precision tra-

jectories for tf-idf method with and without a thesaurus

running on MODIS dataset with Top 2 feedback and fil-

tered at a = 0.05. Based on primary measures alone, it

appears that the tf-idf ? thesaurus technique is better in

terms of recall and would be selected over the simple tf-idf

method.

Next, we look at the secondary measure of Lag for the

same scenario (Fig. 3). The graph shows that in iterations

four through six, the non-thesaurus technique achieves total

separation between true links and false positives (Lag of 0)

much sooner than the thesaurus technique. From an ana-

lyst’s perspective, the non-thesaurus method may be pref-

erable even at a reduction in recall, because the top

portions of all candidate link lists will contain (almost)

exclusively relevant matches sooner (in less iterations).

5.1.2 Example 2

The graph in Fig. 4 compares the recall-versus-precision

trajectories obtained in our experiments for LSI and tf-idf

methods using Top 2 feedback and no filtering on the

MODIS dataset. The trajectories are close to each other,

with LSI showing somewhat better recall, while tf-idf

Fig. 2 Recall and precision for MODIS dataset, Top 2 feedback,

filter 0.05, tf-idf plus Thesaurus versus tf-idf (No thesaurus)

Fig. 3 Lag for MODIS dataset, Top 2 feedback, filter 0.05,

Thesaurus versus No thesaurus
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eventually moves toward better precision (over 18%). It is

not very clear which technique is better. Unlike Example 1,

where precision of both methods was quite high, the pre-

cision for LSI is significantly lower in this example.

Now, we look at the secondary measure of Lag for the

same scenario, shown in Fig. 5. Both methods show similar

trends in reducing Lag. However, we see that tf-idf reduces

Lag to a much lower number (less than 1), while the Lag

for LSI remains above 2 after iteration 8. This suggests that

tf-idf is much more successful in separating the true links

from false positives in candidate link lists during the

feedback process.

This supposition receives even more support upon

examination of the DiffAR trends shown in Fig. 6: DiffAR

for tf-idf shows a huge improvement over DiffAR for LSI.5

Based on the secondary measures, an analyst would prefer

tf-idf, even though recall is somewhat lower than for LSI.

5.1.3 Example 3

The graph in Fig. 7 compares the recall-versus-precision

trajectories for LSI and tf-idf methods on the CM-1 dataset

using Top 2 feedback and no filtering. The graph shows

almost no change in precision (and precision itself is

unacceptably low) and only a slight change in recall for

Fig. 6 DiffAR for MODIS dataset, Top 2 feedback, no filter, LSI

versus tfi-df

Fig. 7 Recall and precision for CM1 dataset, Top 2 feedback, no

filter, LSI versus tf-idf

Fig. 4 Recall and precision for MODIS dataset, Top 2 feedback, no

filter, LSI versus tf-idf

Fig. 5 Lag for MODIS dataset, Top 2 feedback, no filter, LSI versus

tf-idf

5 In this graph, DiffAR grows to a number above 1. This is because

during the feedback process, the similarity between two requirements

can exceed 1, as well as become negative.
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both methods (these runs show that IR methods are not

always very effective by themselves). However, in prior

work [20], we include graphs showing that, in these runs,

filtering improves precision significantly without hurting

recall significantly. It is not clear that one technique out-

performs the other in any significant way.

Next, we look at the secondary measure of Lag for the

same scenario, in Fig. 8. For LSI, Lag drops from 8.3 to

just above 6. But for tf-idf, Lag drops from 6 to 4.5. While

both Lags start and end fairly large (our preference is for

Lag to fall down to the 1–2 range), it is clear that tf-idf

outperformed LSI, thus providing us with a clear tie-

breaker. Again, consideration of a secondary measure

changes the scenario assessment.

5.1.4 Example 4

Our last example looks at two runs over different datasets.

The graph in Fig. 9 compares the recall-versus-precision

trajectories for tf-idf method with Top 2 feedback on the

MODIS (no filtering) and CM-1 (filter set to 0.1) datasets.

We note that these two runs are very different—one is on a

small dataset and another is on a large dataset. However,

the precision-versus-recall trajectories of the runs look

similar; in fact, they follow the same path on the last few

iterations.

Next, we look at the secondary measure of Lag for the

same scenario (in Fig. 10). There is a clear difference in the

behavior of Lag for the MODIS and CM-1 cases. Lag for

MODIS starts very high, at 7.5, and does not drop to an

acceptable range until iteration 5. Once there, however, it

outperforms the Lag of CM-1, which over the course of 8

iterations shows slow but steady decline from about 2.2

to 1.1.

Selectivity, plotted in Fig. 11, also highlights the dif-

ferences between these two runs. It shows a much better

selectivity for the CM-1 dataset, which remains steady

throughout the iterations. At the same time, selectivity for

the MODIS run starts at around 0.41 and steadily improves

to just over 0.2. How do we interpret this? Comparing these

two runs for the purpose of determining which one was

better is not very meaningful, as they relate to different

datasets. However, we may notice that for all the differ-

ences between the runs, precision and recall do not dis-

tinguish between them, while our secondary measures, Lag

and Selectivity, uncover the differences.

Fig. 8 Lag for CM1 dataset, Top 2 feedback, no filter, LSI versus tf-

idf

Fig. 9 Recall and precision, tf-idf, Top 2 feedback, CM1 filter 0.1

versus MODIS no filter

Fig. 10 Lag, tf-idf, Top 2 feedback, CM1 filter 0.1 versus MODIS no

filter
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5.2 Conclusions

The examples shown above illustrate some of the situations

we encountered during our tracing experiments where the

use of secondary measures either changed our perceptions

about the results outright or provided us with the ability to

distinguish between the quality of otherwise similar test

runs. In person-power intensive requirements tasks such as

tracing, we need reliable ways to assess a technique’s

effectiveness from the analyst’s perspective. We feel that

these examples provide support for and evidence of the

ability of secondary measures to assist with such

assessments.

Additional comments can be made concerning one of

the issues with the state-of-the-art in automating trace-

ability work that has been illustrated in the examples

described above: the low precision of the candidate RTMs

obtained in experiments. Indeed, in many experiments

described in our work [20] and the work of other research

groups [1, 4, 28], candidate RTMs generated by automated

methods had rather high recall (80% and above), but low,

by IR standards, precision (in single or low double digits).

This, and similar situations in the use of data mining

techniques to build predictive models in Software Engi-

neering [31], has led to a vigorous discussion [31, 32, 44]

on the topic.

Zhang and Zhang [44] argue that predictive models with

low precision are useless in software engineering. Menzies

et al. [32], writing in response to Zhang and Zhang [44],

argue that low precision alone is not sufficient to declare

failure.

As discussed in Sect. 3.2.4, selectivity can be used

together with recall to evaluate the quality of a candidate

RTM much in the same way that precision and recall are

used in IR. Indeed, given a specific candidate RTM,6 a

human analyst needs to examine it in its entirety regardless

of how high the precision. Therefore, in the presence of

high recall, the size of the candidate RTM is a good

enough estimator of the human effort needed to complete

the RTM generation task, and, perhaps, an even better

estimate than precision.

In general, we would like to see higher precision can-

didate RTMs (at fixed high recall levels) as this means that

the size of the candidate RTM decreases. However, as long

as the savings from generating a candidate RTM using an

automated method as measured by selectivity are signifi-

cant, we maintain that such automated methods have

practical uses. For further discussion of this topic, we refer

the reader to Zhang and Zhang [44] for the critique of low-

precision methods and to Menzies et al. [32] for defense of

such methods.

5.3 Secondary measures: related work

A number of other fields are using secondary measures in

their evaluations. In the area of performance assessment,

Le et al. [25] examined the effects of active queue man-

agement on response time experienced by web users. They

found it necessary to use packet loss rates and link utili-

zation as secondary measures to the primary measure of

user perceived response time. Vincent et al. [42] modified

existing multi-agent technologies to provide distributed

control for a real-time environment. They found it neces-

sary to use additional secondary measures because the

measure hard scheduling deadline (in seconds) did not

provide an appropriate grain size. Haritsa et al. [12]

examined the parameters of a real-time database system

that have significant impact on the performance of con-

currency control algorithms. Their primary measure

examines hard deadlines. A secondary measure, used when

considering soft deadlines, measures the average time by

which transactions miss their deadlines.

Hayes et al. [15] were able to achieve recall of 85% at

precision of 40% on a small dataset using tf-idf ? the-

saurus, no secondary measures were collected. Hayes et al.

[16] found the secondary measures of Lag, DiffAR, and

selectivity to be useful in evaluating the effectiveness of tf-

idf and tf-idf plus thesaurus with user feedback on a small

dataset. Antoniol et al. [1] examined traceability of

requirements to code using two IR techniques (tf-idf and

probabilistic IR). They measured recall plus precision,

achieving 100% recall at 13.8% precision for one dataset.

Fig. 11 Selectivity: tf-idf, Top 2 feedback, CM1 filter 0.1 versus

MODIS no filter

6 We assume here that the RTM was produced as part of the IV&V

process and thus, as stated in Sects. 1 and 2, requires validation by a

human analyst.
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Marcus and Maletic [28] applied latent semantic indexing

(LSI) to the same datasets as Antoniol et al., again using

recall plus precision to evaluate. They achieved 93.5%

recall plus 54% precision for one dataset. Note that neither

of these works used secondary measures.

6 Conclusions and future work

We undertook an examination of two areas that can be used

to enhance traceability for software engineering. Each of

the studies is discussed below.

6.1 Vocabulary base

In general, it was found that accuracy decreased when the

vocabulary base was generated from both the high- and

low-level artifact and that much stabler results were

achieved when the vocabulary base considered only the

low-level artifact. In the case of the tf-idf method with no

filter, the difference in the vocabulary base did not seem to

impact the results. However, the recall and precision values

were slightly better for some of the filter values when both

the documents and the queries were used to build the

vocabulary base. This means that the new vocabulary base

did not identify any new true links.

These results lend preliminary evidence that it may not be

beneficial to use both artifacts as the vocabulary base. The

results are not conclusive, however. This is not particularly

surprising as we only examined three datasets. We plan to

examine this idea again when additional datasets are available

for experimentation. Also, we plan to investigate the ‘‘differ-

ent’’ results for low ? high vocabulary base for vector space

with tf-idf and LTU weighting—we want to understand why

the low ? high behaved differently than low artifact only.

6.2 Secondary measures

We applied IR methods with relevance feedback to the

problem of tracing textual artifacts and demonstrated that,

in certain cases, secondary measures significantly affect the

analyst’s perception of the quality of the results. Thus, the

secondary measures we studied prove to be an important

asset in our quest to evaluate different methods for tracing

requirements. We found support for the use of secondary

measures. Specifically, we found numerous examples

where the assessment of the results of a trace given primary

measures was very different from the result assessment

using secondary measures.

While the results of the study are encouraging, they also

show clear avenues for improvement. Among them we

identify the following:

1. Study of the work of analysts in requirements tracing,

and

2. Study of the applicability of secondary measures to

other retrieval activities in requirements and software

engineering.

We note that the current study was an objective evalu-

ation of the quality of results produced by the IR and rel-

evance feedback algorithms. In practice, however, it will

be up to human analysts to supply relevance feedback, and

as such, it is impossible to envision analysts to be 100%

correct in their decisions. Therefore, in order to make a

tracing tool useful for analysts, we need to study how they

tend to work with the candidate link lists produced by the

software.
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Appendix A: full results from the Waterloo dataset

For the sake of completeness, we chose to include in this

Appendix the full results of our experiments run on the

Waterloo dataset. As mentioned above, we studied 22

pairs of artifacts (functional requirements, test cases).

Each pair came with an RTM, which was used as the

answer set when analyzing the results of the IR methods.

The 22 pairs of artifacts are labeled Waterloo_1,…,

Waterloo_22 in the tables below. As seen from the

results, there was a clear variability of results on dif-

ferent pairs of artifacts. Some pairs (e.g., Waterloo_16)

proved to be easier to trace than others (e.g., Water-

loo_6). For each table, we present the following sum-

mary information:

• The row with the best value of the f2-measure (column

F2) achieved. This row is highlighted in bold in the

table and is reported separately at the bottom.

• The maximum, minimum, average, and median value

of each parameter achieved. These are reported

independently (i.e., the MAX value for Precision

and the MAX value for Recall reported at the bottom

in the same line may come from different artifact

pairs).

See Tables 7, 8 and 9

Requirements Eng (2010) 15:313–335 329

123



www.manaraa.com

Table 7 Vocabulary base: Waterloo dataset, vector space retrieval using TF-IDF

Vocabulary base Low Low ? high

Artifact Pair Recall Precision F2 Recall Precision F2

Iteration 0

Waterloo_1 0.872 0.090 0.318 0.769 0.411 0.788

Waterloo_2 0.824 0.467 0.714 0.559 0.826 0.597

Waterloo_3 0.954 0.082 0.305 0.908 0.274 0.621

Waterloo_4 0.978 0.099 0.351 0.956 0.253 0.614

Waterloo_5 0.938 0.113 0.381 0.875 0.255 0.588

Waterloo_6 0.477 0.071 0.223 0.534 0.245 0.432

Waterloo_7 0.566 0.833 0.605 0.509 0.844 0.553

Waterloo_8 0.439 0.193 0.350 0.182 0.545 0.210

Waterloo_9 0.648 0.275 0.510 0.197 0.519 0.225

Waterloo_10 0.784 0.674 0.759 0.378 0.583 0.407

Waterloo_11 0.733 0.667 0.719 0.300 0.600 0.333

Waterloo_12 0.882 0.147 0.441 0.804 0.298 0.600

Waterloo_13 0.627 0.561 0.613 0.118 1.000 0.143

Waterloo_14 0.706 0.471 0.642 0.588 0.513 0.571

Waterloo_15 0.841 0.311 0.627 0.580 0.302 0.489

Waterloo_16 0.965 0.517 0.822 0.848 0.436 0.411

Waterloo_17 0.780 0.372 0.640 0.756 0.158 0.431

Waterloo_18 0.900 0.191 0.517 0.767 0.299 0.584

Waterloo_19 0.804 0.127 0.389 0.714 0.253 0.524

Waterloo_20 0.833 0.179 0.481 0.659 0.696 0.666

Waterloo_21 0.841 0.366 0.668 0.429 0.692 0.464

Waterloo_22 0.789 0.205 0.503 0.632 0.500 0.600

Waterloo_best_F2 0.965 0.517 0.822 0.769 0.411 0.788

Waterloo-average 0.781 0.319 0.526 0.594 0.477 0.493

Waterloo-median 0.814 0.240 0.514 0.610 0.468 0.538

Waterloo-Max 0.978 0.833 0.822 0.956 1.000 0.788

Waterloo-Min 0.439 0.071 0.223 0.118 0.158 0.143

Iteration 8

Waterloo_1 0.872 0.077 0.284 0.077 0.429 0.092

Waterloo_2 0.824 0.400 0.680 0.559 0.514 0.549

Waterloo_3 0.954 0.074 0.282 0.908 0.237 0.580

Waterloo_4 0.978 0.083 0.309 0.956 0.209 0.557

Waterloo_5 0.938 0.094 0.336 0.656 0.778 0.677

Waterloo_6 0.477 0.067 0.215 0.534 0.192 0.394

Waterloo_7 0.547 0.707 0.573 0.509 0.750 0.544

Waterloo_8 0.439 0.179 0.340 0.182 1.000 0.217

Waterloo_9 0.648 0.263 0.501 0.197 0.500 0.224

Waterloo_10 0.784 0.518 0.711 0.378 0.700 0.417

Waterloo_11 0.733 0.688 0.724 0.300 0.818 0.344

Waterloo_12 0.863 0.133 0.412 0.794 0.245 0.549

Waterloo_13 0.627 0.451 0.582 0.118 0.857 0.142

Waterloo_14 0.706 0.462 0.638 0.588 0.667 0.602

Waterloo_15 0.841 0.279 0.600 0.580 0.290 0.483

Waterloo_16 0.965 0.454 0.788 0.375 0.771 0.418

Waterloo_17 0.780 0.283 0.578 0.756 0.158 0.431

Waterloo_18 0.900 0.176 0.495 0.767 0.256 0.548
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Table 7 continued

Vocabulary base Low Low ? high

Artifact Pair Recall Precision F2 Recall Precision F2

Waterloo_19 0.804 0.107 0.348 0.714 0.202 0.474

Waterloo_20 0.841 0.164 0.461 0.652 0.694 0.660

Waterloo_21 0.857 0.293 0.619 0.429 0.794 0.472

Waterloo_22 0.789 0.176 0.466 0.632 0.343 0.541

Waterloo_best_F2 0.965 0.454 0.788 0.656 0.778 0.677

Waterloo-average 0.780 0.279 0.497 0.530 0.518 0.451

Waterloo-median 0.814 0.221 0.498 0.569 0.507 0.478

Waterloo-Max 0.978 0.707 0.788 0.956 1.000 0.677

Waterloo-Min 0.439 0.067 0.215 0.077 0.158 0.092

Table 8 Vocabulary base: Waterloo dataset, vector space retrieval using LTU

Vocabulary base Low Low ? high

Artifact Pair Recall Precision F2 Recall Precision F2

Iteration 0

Waterloo_1 0.872 0.081 0.294 0.769 0.349 0.620

Waterloo_2 0.853 0.439 0.718 0.559 0.864 0.601

Waterloo_3 0.954 0.085 0.313 0.908 0.309 0.654

Waterloo_4 0.956 0.049 0.202 0.956 0.254 0.616

Waterloo_5 0.938 0.108 0.370 0.875 0.214 0.541

Waterloo_6 0.477 0.073 0.227 0.523 0.208 0.401

Waterloo_7 0.528 0.824 0.569 0.528 0.824 0.569

Waterloo_8 0.439 0.190 0.348 0.212 0.824 0.249

Waterloo_9 0.648 0.288 0.518 0.211 0.441 0.236

Waterloo_10 0.784 0.690 0.763 0.378 0.700 0.417

Waterloo_11 0.733 0.733 0.733 0.333 1.000 0.385

Waterloo_12 0.882 0.139 0.427 0.833 0.309 0.622

Waterloo_13 0.627 0.571 0.615 0.118 0.462 0.138

Waterloo_14 0.706 0.471 0.642 0.588 0.625 0.595

Waterloo_15 0.841 0.287 0.607 0.580 0.280 0.478

Waterloo_16 0.972 0.528 0.832 0.403 0.784 0.446

Waterloo_17 0.780 0.368 0.637 0.756 0.419 0.651

Waterloo_18 0.900 0.190 0.515 0.800 0.353 0.638

Waterloo_19 0.804 0.131 0.397 0.732 0.273 0.548

Waterloo_20 0.841 0.178 0.481 0.644 0.714 0.657

Waterloo_21 0.825 0.364 0.658 0.524 0.767 0.559

Waterloo_22 0.789 0.197 0.493 0.632 0.500 0.600

Waterloo_best_F2 0.972 0.528 0.832 0.644 0.714 0.657

Waterloo-average 0.780 0.317 0.516 0.585 0.521 0.510

Waterloo-median 0.814 0.242 0.517 0.584 0.451 0.564

Waterloo-Max 0.972 0.824 0.832 0.956 1.000 0.657

Waterloo-Min 0.439 0.049 0.202 0.118 0.208 0.138

Iteration 8

Waterloo_1 0.872 0.072 0.270 0.769 0.333 0.610

Waterloo_2 0.853 0.358 0.668 0.559 0.559 0.559

Waterloo_3 0.954 0.078 0.294 0.908 0.257 0.602
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Table 8 continued

Vocabulary base Low Low ? high

Artifact Pair Recall Precision F2 Recall Precision F2

Waterloo_4 0.956 0.049 0.202 0.956 0.195 0.538

Waterloo_5 0.938 0.091 0.328 0.875 0.188 0.505

Waterloo_6 0.477 0.068 0.217 0.511 0.160 0.355

Waterloo_7 0.547 0.806 0.585 0.509 0.844 0.553

Waterloo_8 0.439 0.181 0.342 0.212 0.452 0.237

Waterloo_9 0.648 0.253 0.494 0.211 0.556 0.241

Waterloo_10 0.784 0.580 0.732 0.378 0.560 0.405

Waterloo_11 0.733 0.733 0.733 0.333 0.588 0.365

Waterloo_12 0.882 0.130 0.408 0.824 0.263 0.577

Waterloo_13 0.627 0.444 0.580 0.118 1.000 0.143

Waterloo_14 0.706 0.429 0.625 0.588 0.345 0.515

Waterloo_15 0.841 0.287 0.607 0.580 0.251 0.459

Waterloo_16 0.965 0.466 0.795 0.396 0.770 0.438

Waterloo_17 0.780 0.278 0.573 0.756 0.443 0.662

Waterloo_18 0.900 0.178 0.496 0.800 0.293 0.594

Waterloo_19 0.804 0.111 0.357 0.732 0.227 0.506

Waterloo_20 0.841 0.159 0.453 0.629 0.697 0.641

Waterloo_21 0.825 0.281 0.595 0.524 0.767 0.559

Waterloo_22 0.789 0.179 0.469 0.632 0.462 0.588

Waterloo_best_F2 0.965 0.466 0.795 0.756 0.443 0.662

Waterloo-average 0.780 0.282 0.492 0.582 0.464 0.484

Waterloo-median 0.814 0.217 0.495 0.584 0.447 0.526

Waterloo-Max 0.965 0.806 0.795 0.956 1.000 0.662

Waterloo-Min 0.439 0.049 0.202 0.118 0.160 0.143

Table 9 Vocabulary Base. Waterloo Dataset (truncated), Latent Semantic Indexing

Vocabulary base Low Low ? high

Artifact pair #Dims Recall Precision F2 #Dims Recall Precision F2

Iteration 0

Waterloo_1 5 0.795 0.064 0.242 10 0.872 0.069 0.261

10 0.872 0.069 0.262 25 0.846 0.080 0.289

15 0.846 0.078 0.286 40 0.872 0.088 0.314

Waterloo_2 5 0.824 0.149 0.432 10 0.824 0.222 0.534

10 0.794 0.284 0.584 25 0.853 0.426 0.711

15 N/A N/A N/A 40 0.824 0.438 0.700

Waterloo_3 5 0.969 0.052 0.216 10 0.985 0.063 0.250

10 0.969 0.062 0.248 25 0.985 0.076 0.291

15 0.954 0.065 0.257 40 0.954 0.078 0.294

Waterloo_4 5 0.733 0.053 0.207 10 0.956 0.063 0.250

10 0.933 0.055 0.222 25 0.956 0.084 0.311

15 0.978 0.059 0.236 40 0.978 0.095 0.343

Waterloo_5 5 0.938 0.079 0.296 10 0.938 0.077 0.288

10 0.938 0.091 0.329 25 0.938 0.106 0.365

15 0.938 0.096 0.341 40 0.938 0.108 0.369

Waterloo_12 5 0.912 0.091 0.325 10 0.902 0.105 0.359
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Table 9 continued

Vocabulary base Low Low ? high

Artifact pair #Dims Recall Precision F2 #Dims Recall Precision F2

10 0.922 0.101 0.350 25 0.843 0.121 0.384

15 0.912 0.114 0.381 40 0.922 0.138 0.431

Waterloo_16 5 0.840 0.248 0.569 10 0.917 0.261 0.610

10 0.924 0.335 0.683 25 0.951 0.371 0.725

15 N/A N/A N/A 40 0.979 0.452 0.794

Waterloo_18 5 0.833 0.095 0.326 10 1.000 0.122 0.410

10 0.967 0.127 0.417 25 0.900 0.189 0.513

15 0.900 0.158 0.464 40 0.900 0.193 0.659

Waterloo_19 5 0.893 0.083 0.302 10 0.857 0.081 0.293

10 0.839 0.090 0.315 25 0.839 0.101 0.341

15 0.911 0.098 0.343 40 0.804 0.122 0.379

Waterloo_20 5 0.879 0.134 0.417 10 0.909 0.142 0.436

10 0.909 0.147 0.446 25 0.902 0.159 0.467

15 0.864 0.170 0.476 40 0.902 0.173 0.490

Waterloo_22 5 0.789 0.130 0.393 10 0.842 0.103 0.345

10 0.842 0.150 0.437 25 0.842 0.178 0.482

15 0.789 0.214 0.514 40 0.789 0.211 0.510

Iteration 8

Waterloo_1 5 0.769 0.054 0.210 10 0.872 0.063 0.245

10 0.872 0.063 0.246 25 0.846 0.069 0.261

15 0.846 0.069 0.261 40 0.872 0.076 0.282

Waterloo_2 5 0.824 0.137 0.412 10 0.824 0.197 0.504

10 0.794 0.257 0.560 25 0.853 0.377 0.681

15 N/A N/A N/A 40 0.824 0.418 0.690

Waterloo_3 5 0.969 0.051 0.209 10 0.985 0.061 0.243

10 0.969 0.060 0.241 25 0.985 0.069 0.269

15 0.954 0.062 0.245 40 0.954 0.071 0.273

Waterloo_4 5 0.733 0.050 0.197 10 0.978 0.061 0.243

10 0.933 0.053 0.216 25 0.956 0.073 0.280

15 0.978 0.056 0.227 40 0.978 0.079 0.298

Waterloo_5 5 0.938 0.075 0.285 10 0.938 0.071 0.273

10 0.938 0.085 0.312 25 0.938 0.087 0.316

15 0.938 0.083 0.307 40 0.938 0.092 0.330

Waterloo_12 5 0.922 0.089 0.320 10 0.902 0.099 0.344

10 0.922 0.097 0.341 25 0.833 0.111 0.362

15 0.902 0.107 0.363 40 0.922 0.127 0.409

Waterloo_16 5 0.847 0.228 0.550 10 0.931 0.253 0.606

10 0.910 0.295 0.642 25 0.944 0.343 0.700

15 N/A N/A N/A 40 0.958 0.380 0.735

Waterloo_18 5 0.833 0.092 0.319 10 1.000 0.114 0.391

10 0.967 0.116 0.393 25 0.900 0.168 0.480

15 0.900 0.140 0.431 40 0.900 0.176 0.638

Waterloo_19 5 0.911 0.078 0.289 10 0.857 0.076 0.282

10 0.839 0.082 0.294 25 0.839 0.090 0.314

15 0.911 0.087 0.314 40 0.804 0.100 0.334

Waterloo_20 5 0.871 0.127 0.400 10 0.886 0.134 0.417

10 0.909 0.135 0.424 25 0.871 0.147 0.439
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